
 

 

  

ESSE 3610 – Geodetic Concepts 

PROJECT 3 

December 3rd, 2018      

Yaseen Al-Taie 213996921 

Hunter Schofield 214193627 

        

 

 

 

 



Executive summary➔ 

  This report provides insight into conformal mapping and UTM projections, focusing on 

how to perform map projections in practice, and how to apply the combined scale factor in 

practice. Specifically, this report dives into the derivations for metric tensors and the 

applications of these derivations, the calculations required to determine the coordinates on a 

UTM plane, and the definition and applications of the combined scale factor. 

 The first section, Part A, focuses on a mathematical approach to understanding the 

metric tensor. This section includes deriving the metric tensor from geocentric coordinates, and 

then referencing the result to define and describe key aspects of the universal transverse 

Mercator, and the associated projections. 

 In Part B, the first task requires computing universal transverse Mercator coordinates, 

given geodetic coordinates for a certain reference ellipsoid. In the second task, we start with 

the universal transverse Mercator projection coordinates, and we need to work in the opposite 

direction as the first task to solve for the geodetic coordinates. The second task also requires 

the determination of the scale factor at the coordinates of the station given. 

 The third section, Part C, revolves more around the understanding and definition of 

what the combined scale factor is, how it is derived, and why it is important. In this section, it is 

required that formulas are provided for calculating the combined scale factor, assuming certain 

initial parameters such as the geodetic coordinates, and semi-axes for the reference ellipsoid. 

 The final section of the lab, Part D, expands on the second section, and requires the 

calculation of the combined scale factor, assuming the parameters previously defined. Then 

further building upon the results for section 2, it is required to determine the combined scale 

factor for different ellipsoidal heights.  

 
 

 

 

 

 

 

 

 

 



  Part A 

Introduction 

 A metric tensor is a type of function that maps input vectors (or points) to a distance in 

geometric space. If the input vectors to the metric tensor are orthogonal, then the inner product 

of the tensor equates to 0. If the magnitude of resultant distance from the metric tensor varies 

from place to place, then the space is curved and is called a Riemannian space. 

Methodology 

a) To derive the metric tensor, begin by looking at the geocentric coordinates as a 

reference X, Y, Z. 

[
𝑋
𝑌
𝑍
] =

[
 
 
 
 
(𝑁 + ℎ) cos𝜑 cos 𝜆
(𝑁 + ℎ) cos 𝜑 sin 𝜆

(𝑁
𝑏2

𝑎2
+ ℎ) sin𝜑

]
 
 
 
 

 

Next, take the partial derivative with respect to each variable (h, φ, λ) and then apply 

the following equation: 

𝑇𝑖𝑗 = 𝛿𝑖𝑗

𝑑𝑥𝑖

𝑑𝑢𝑝
+ 

𝑑𝑥𝑗

𝑑𝑢𝑠
 

Where Tij is the metric tensor for the geodetic coordinates, X1 = X, X2 = Y and X3 = Z, U1 = 

h, U2 = φ, and U3 = λ. 

 Also note that 𝛿𝑖𝑗 is the Kronecker delta and is defined as follows: 

𝛿𝑖𝑗 = {
1 𝑖𝑓 𝑖 = 𝑗
0 𝑖𝑓 𝑖 ≠ 𝑗

 

Expanding the previous equation, the following obtain: 

(
𝑑𝑥

𝑑ℎ
)

2

+ (
𝑑𝑦

𝑑ℎ
)
2

+ (
𝑑𝑧

𝑑ℎ
)
2

 

(
𝑑𝑥

𝑑𝜙
)
2

+ (
𝑑𝑦

𝑑𝜙
)
2

+ (
𝑑𝑧

𝑑𝜙
)

2

 

(
𝑑𝑥

𝑑𝜆
)
2

+ (
𝑑𝑦

𝑑𝜆
)
2

+ (
𝑑𝑧

𝑑𝜆
)
2

 

The above terms constitute the metric tensor for geodetic coordinates. Evaluating the 

terms, we obtain:  



(
𝑑𝑥

𝑑ℎ
)

2

+ (
𝑑𝑦

𝑑ℎ
)
2

+ (
𝑑𝑧

𝑑ℎ
)

2

= cos2 𝜑 cos2 𝜆 + cos2 𝜑 sin2 𝜆 + sin2 𝜑 = 1 

Since this is the partial derivative with respect to h, any terms with the variable N are 

neglected. 

(
𝑑𝑥

𝑑𝜙
)

2

+ (
𝑑𝑦

𝑑𝜙
)

2

+ (
𝑑𝑧

𝑑𝜙
)

2

= (−(𝑁 + ℎ) sin𝜑 cos 𝜆)2 + (−(𝑁 + ℎ) sin𝜑 sin 𝜆)2 + ((𝑁
𝑏2

𝑎2
+ ℎ) cos𝜑)

2

 

Next, consider M: 

𝑀 =
𝑎(1 − 𝑒2)

(1 − 𝑒2 sin2 𝜙𝑖)
3
2

  

 Which can be re-written as: 

𝑀 = N3
b2

a4
   

 To prove the above equation, multiply N by N2(b2/a4): 

𝑁3  =  
𝑎3

(1 −  sin𝜙𝑖
2 𝑒2)

3
2

 

𝑁3
𝑏2

𝑎4
  =  

𝑎3

(1 − sin𝜙𝑖
2 𝑒2)

3
2

𝑏2

𝑎4
= 

𝑎

(1 − sin𝜙𝑖
2 𝑒2)

3
2

𝑏2

𝑎2
 

 However, b2/a2 is equivalent to: 

 
 𝑏2

𝑎2
= 1 − 𝑒2 

Therefore: 

𝑁3
𝑏2

𝑎4
  =  

𝑎

(1 − sin𝜙𝑖
2 𝑒2)

3
2

𝑏2

𝑎2
= 

𝑎(1 − 𝑒2)

(1 − sin𝜙𝑖
2 𝑒2)

3
2

= 𝑀 

 Now, (-N - h) and (Nb2/a2 + h) can be written as: 

𝑀 + h  

 Substituting M into the equation: 



(
𝑑𝑥

𝑑𝜙
)
2

+ (
𝑑𝑦

𝑑𝜙
)
2

+ (
𝑑𝑧

𝑑𝜙
)
2

= ((𝑀 + ℎ) sin 𝜑 cos 𝜆)
2
+ ((𝑀 + ℎ) sin𝜑 sin 𝜆)

2
+

 ((𝑀 + ℎ) cos𝜑)
2

= (𝑀 + ℎ)2 (sin2 𝜑 cos2 𝜆 + sin2 𝜑 sin2 𝜆 + cos2 𝜑)  

sin2 𝜑 cos2 𝜆 + sin2 𝜑 sin2 𝜆 + cos2 𝜑 = sin2 𝜑 (cos2 𝜆 + sin2 𝜆) + cos2 𝜑 

Therefore: 

sin2 𝜑 (1) + cos2 𝜑 = 1 

Finally: 

(
𝑑𝑥

𝑑𝜙
)
2

+ (
𝑑𝑦

𝑑𝜙
)

2

+ (
𝑑𝑧

𝑑𝜙
)
2

= (𝑀 + ℎ)2 

Last term of the metric tensor can be found by taking the partial derivative with respect 

to λ: 

(
𝑑𝑥

𝑑𝜆
)

2

+ (
𝑑𝑦

𝑑𝜆
)
2

+ (
𝑑𝑧

𝑑𝜆
)
2

= (−(𝑁 + ℎ) cos𝜑 sin 𝜆)2 + ((𝑁 + ℎ) cos𝜑 cos 𝜆)
2
+ 0

=  (𝑁 + ℎ)2 cos2 𝜑 sin2 𝜆 + (𝑁 + ℎ)2 cos2 𝜑 cos2 𝜆

= (𝑁 + ℎ)2(cos2 𝜑 sin2 𝜆 + cos2 𝜑 cos2 𝜆) 

 Where: 

cos2 𝜑 sin2 𝜆 + cos2 𝜑 cos2 𝜆 = cos2 𝜙 (sin2 𝜆 + cos2 𝜆) = cos2 𝜙 

 Therefore: 

(
𝑑𝑥

𝑑𝜆
)

2

+ (
𝑑𝑦

𝑑𝜆
)
2

+ (
𝑑𝑧

𝑑𝜆
)
2

= (𝑁 + ℎ)2 cos2 𝜙 

Putting all the terms together, we obtain the following metric tensor for the geodetic 

coordinates (φ,λ,h): 

𝑇𝑖𝑗 = [

1 0 0
0 (𝑀 + ℎ)2 0

0 0 (𝑁 + ℎ)2 cos2 𝜙
] 

Note that the metric tensor is slightly different from the one defined in class, however, 

due to the nature of diagonal tensors, the diagonal values can be rotated depending on 

how the placeholder variables, i and j, are defined.  

b) To write the metric tensor in terms of φ and λ based on the previous derivation, the 

matrix will be as follows: 

𝑇𝑖𝑗 = [
𝑀2 0
0 𝑁2 cos2 𝜙

] 

The resulting matrix is only 2x2 since h is zero. This means that the first term, which is 

based on the partial derivative taken with respect to h, is zero. 



c) Conformal projections ensure that the meridians and parallels are intersecting at 90o. 

This is the most important type of projection in geodesy since it is the result of 

conserving the local shape.  

 

d) Isometric latitudes are used in constructing ellipsoidal models of the Mercator 

projections and Transverse Mercator Projection. These latitudes give equal distance 

displacements along the meridians and parallels at any point on the ellipsoid, hence the 

name isometric. They are defined by the following equation: 

 
For a Transverse Mercator Projection, the meridians and parallels must be intersecting 

at 90o in which isometric latitudes ensure this conformal requirement is met. 

 

e) Lambert conformal conic projection uses cones as its developable surfaces. For a secant 

projection, the distortion increases with distance from the two standard parallels. Used 

for regions with a E/W expanse.  

Transverse Mercator Projection uses a cylinder as its developable surface. It is a 

Mercator projection rotated by 90o hence the name transverse. The projection is 

conformal and used for regions a N/S expanse. It is also used for topographic mapping 

and it is the basis for plane coordinate systems such as the UTM projection. 

Processing Inputs 

 The inputs for this problem are defined by the vectors that represent the points on the 

given surface. The orthogonality of the input vectors directly affects the shape of the resultant 

tensor. That is, if the input vectors are orthogonal, then the inner product of the tensor is 0, 

resulting in a diagonal tensor. If the input vectors are not orthogonal, then the inner product of 

the tensor is not 0, and the tensor is not diagonal. 

Processing Outputs & Analysis 

 Applying the methodology yields the following metric tensor: 

  

𝑇𝑖𝑗 = [

1 0 0
0 (𝑀 + ℎ)2 0

0 0 (𝑁 + ℎ)2 cos2 𝜙
] 

Note that the metric tensor is slightly different from the one defined in class, however, 

due to the nature of diagonal tensors, the diagonal values can be rotated depending on how 

the placeholder variables, i and j, are defined.  

 



Part B 

Introduction 

 An important part of geodesy is converting between geodetic coordinates, latitude and 

longitude, to universal transverse Mercator plane coordinates, and vise versa. The following 

methodology does exactly this for given geodetic coordinates or UTM coordinates, and a 

reference ellipsoid. 

Methodology (question 2) 

2) This section only shows how to compute the needed values. The answers are provided 

using MATLAB code in the processing outputs section of this report. The code will be 

provided in the appendix. Note: In the code, all angles are converted into radians. 
 

We are given the astronomical geodetic latitude and longitude, which have been 

calculated using lab group number 14: 

𝜙 = 45.025930 𝑁 

𝜆 = 281.52820 𝑊 

For λ, we must convert it into east, therefore: 

𝜆 =  3600 − 281.52820 = 78.47150𝐸 

Next, find the corresponding zone number: 

𝑍𝑜𝑛𝑒 # =  
180 −  𝜆

6
=

180 − (−281.5282)

6
= 76.9 ≈ 77 

Since there are only 60 zones, subtract (77) – (60) = 17 

For zone number 17, the defining constants are: 

𝜆𝑜 = 81° 

𝐸𝑜 = 500,00 𝑚 

𝑁𝑜 = 0 

𝜙𝑜 =0 

𝐾𝑜 =0.9996 

Because φo = 0, zone-specific constants ωo and So are equal to zero, and parameters for 

the GRS 80 ellipsoid are: 

 

𝑎 = 6,378,137 𝑚 



𝑒2 = 0.006694380023 

𝑟 = 6,367,449.14577 𝑚 

Next, we need the rectifying latitude constants for the GRS ellipsoid which are: 

𝑈𝑜 = −0.005048250776 

𝑈2 = 0.000021259204  

𝑈4 = −0.000000111423 

𝑈6 =  0.0000000000626 

 

From the rectifying latitude constants, we can find rectifying latitude ω, as a function of 

φ using the following equation: 

𝜔 =  𝜙 + (sin𝜙 𝑐𝑜𝑠𝜙) (𝑈𝑜 + cos2 𝜙 (𝑈2 + cos2 𝜙 (𝑈4 + 𝑈6 cos2 𝜙))) [𝑚] 

Afterwards, the meridian distance can be calculated using: 

𝑆 = 𝐾𝑜𝜔𝑟 [𝑚] 

Then calculate radius of the prime vertical using: 

R =  
 Koa

√(1 − 𝜀2(sin𝜙)2)
 [𝒎] 

And  

𝜂2 =
𝜀2

1 − 𝜀2
cos2 𝜙 

Finally, define required constants for the calculation of N and E: 

𝐴1 = −𝑅 [𝑚] 

𝐴2 =
1

2
𝑅 tan𝜙 [𝑚] 

𝐴3 =
1

6
(1 − tan2 𝜙 + 𝜂2) 

𝐴4 =
1

12
(5 − tan2 𝜙 + 𝜂2(9 + 4𝜂2)) 

𝐴5 =
1

120
(5 − 18 tan2 𝜙 + tan4 𝜙 + 𝜂2(14 − 58 tan2 𝜙)) 

𝐴6 =
1

360
(61 − 58 tan2 𝜙 + tan4 𝜙 + 𝜂2(270 − 330 tan2 𝜙)) 



𝐴7 =
1

5040
(61 − 479 tan2 𝜙 + 179 tan4 𝜙 − tan6 𝜙) 

Define the last auxiliary quantity as: 𝐿 = 𝜆 − 𝜆𝑜 cos𝜙 [𝑟𝑎𝑑] 

And lastly, calculate E and N using: 

𝐸 = 𝐸𝑜 + 𝐴1𝐿 (1 + 𝐿2(𝐴3 + 𝐿2(𝐴5 + 𝐿2𝐴7𝐿
2))) [𝑚] 

𝑁 = 𝑆 − 𝑆𝑜 + 𝑁𝑜 + 𝐴2𝐿
2(1 + 𝐿2(𝐴4 + 𝐴6𝐿

2)) [𝑚] 

Processing Inputs (question 2) 

 The inputs for solving this problem are relatively straightforward. These consist of the 

zone number which was determined prior, the scale factor, the false northing and easting, the 

geodetic coordinates, the reference ellipsoid parameters, and the reference ellipsoid 

constraints. 

Processing Outputs & Analysis (question 2) 

 The results of the MATLAB code for question 2 are as follows. These values represent 

the universal transverse Mercator plane coordinates which correspond to the given geodetic 

coordinates. By inspection, these values seem correct since they are of the same order of 

magnitude as UTM coordinates should be for this zone. 

E= 6.9920e+05 m 

N= 4.9889e+06 m 

Methodology (question 3) 

Given plane coordinates on the UTM projection: 

𝑍𝑜𝑛𝑒 = 17 

𝑁 = 5107043.021 𝑚 

𝐸 = 727960.546 𝑚 

The projection constants and parameters and terms for the ellipsoid are:



𝜆𝑜 = 810 

𝐸𝑜 = 500,000 

𝑁𝑜 = 0 

𝜙𝑜 = 0 

𝑆𝑜 = 0 

𝐾𝑜 = 0.9996 

𝑎 = 6,378,137 𝑚 

𝑒2 = 0.006694380023 

𝑟 = 6,367,449.14577 

𝑉𝑜 =  0.005022893948 

𝑉2 =  0.000029370625  

𝑉4 = 0.000000235059 

𝑉6 = 0.000000002181  

Calculate the rectifying latitude ω using the following equation: 

𝜔 =
𝑁 − 𝑁𝑜 + 𝑆𝑜

𝐾𝑜𝑟
 [𝑟𝑎𝑑] 

Afterwards, calculate the foot point latitude 𝜙′ using the following equation: 

𝜙′ =  𝜔 + sin𝜔 cos𝜔 {𝑉𝑜 + cos2 𝜔 [𝑉2 + cos2 𝜔 (𝑉4 + 𝑉6 cos2 𝜔)]} [𝑟𝑎𝑑] 

Next, compute Δ𝜙 using the following equation: 

Δ𝜙 =  𝑡1

[
 
 
 

−
(
𝑋′

𝐾𝑜
)
2

2 𝑅1 𝑁1
+

(
𝑋′

𝐾𝑜
)
4

24𝑅1 𝑁1
3 

(5 + 3𝑡1
2)

]
 
 
 

 [𝑟𝑎𝑑] 

For the above equation, the corresponding variables are defined as: 

𝑅1 =
𝑎(1 − 𝜀2)

(1 − 𝜀2 sin2 𝜙′)
3
2

 [𝑚] 

 𝑁1 =
𝑎

√1 − 𝜀2 sin2 𝜙′
 [𝑚] 

𝑡1 = tan𝜙′ 



𝜂1
2 =

𝜀2

(1 − 𝜀2)
cos2 𝜙′ 

𝑋′ = 𝐸 − 𝐸𝑜[𝑚] 

After calculating all the above variables, Δ𝜙 can be calculated. After calculating Δ𝜙,  𝜙 

can be found using: 

𝜙 = 𝜙′ +  Δ𝜙 [𝑟𝑎𝑑] 

To find 𝜆, we need to find Δ𝜆 first using the following equation: 

Δ𝜆 = sec𝜙′ [
𝑋′

𝑁1
−

1

6
(
𝑋′

𝑁1
)

3

(1 + 2𝑡1
2 + 𝜂1

2) +
1

120
(
𝑋′

𝑁1
)

5

(5 + 28𝑡1
2 + 24𝑡1

4)] [𝑟𝑎𝑑] 

After finding Δ𝜆, we can find 𝜆 using the following equation: 

𝜆 =  𝜆𝑜 +  Δ𝜆 [𝑟𝑎𝑑] 

To find meridian convergence, use the following equation: 

𝛾 = 𝐷1𝑄(1 + 𝑄2(𝐷3 + 𝐷5𝑄
2)) (

180

𝜋
)  [𝑟𝑎𝑑] 

For the above equation, the following are the corresponding variables needed to solve 

it: 

𝐷1 = tan𝜙𝑓 

𝐷3 = −
1

3
(1 + tan2 𝜙 − 𝜂 − 2𝜂2) 

𝐷5 =
1

15
(2 + 5 tan2 𝜙 + 3 tan4 𝜙) 

𝑄 =
𝐸 − 𝐸𝑜

𝑅𝑓
=

𝐸 − 𝐸𝑜

𝑁1𝐾𝑜
 

After find the needed variables, the meridian convergence can be calculated. To find the 

scale factor, use the following equation: 

𝑘 =  𝐾𝑜(1 + 𝐺2𝑄
2(1 + 𝐺4𝑄

2)) 

For the above equation, the following are the corresponding variables needed to solve 

it: 

𝐺2 =
1

2
(1 + 𝜂2) 

𝐺4 =
1

12
(1 + 5𝜂2) 

After finding the needed variables, the scale factor can be calculated.  



Processing Inputs (question 3) 

 This question is the reverse of the previous question, except with different values. 

Therefore, the inputs of this question are the same as the outputs of the previous question. 

These consist of the zone number, the universal transverse Mercator plane coordinates, and 

the reference ellipsoid parameters. 

Processing Outputs & Analysis (question 3) 

 The results from the MATLAB code are as follows. These values represent the geodetic 

coordinates, the meridian convergence, and the scale factor at this point. By inspection, these 

values seem correct. We know that the zone in we are working in is the same zone as what was 

determined in the previous problem. Since we are in the same zone, the geodetic coordinates 

should be relatively similar to the given coordinates in question 2, which we can see they are. 
𝝓 = 𝟒𝟔. 𝟎𝟕𝟖𝟗𝒐 𝑵 

𝝀 = 𝟐𝟖𝟏. 𝟗𝟒𝟖𝟐𝒐 𝑾  

𝜸 = 𝟐. 𝟏𝟐𝟒𝟓𝒐 

𝒌 = 𝟏. 𝟎𝟎𝟎𝟐 

Software Structure  

 The software structure of the code is very straightforward. It is a script with no 

intermediary functions used to calculate the required outputs for the questions. The full code 

can be viewed in the appendix.  

 

 

 

 

 

 

 

 

 

 

 

 

 



Part C 

 Introduction 

 The combined scale factor is the combination of the average scale factor and the 

ellipsoidal correction factor. This combined scale factor is used when horizontal distances on a 

projection need to be reduced to grid distances. In simple terms, the combined scale factor can 

be represented as follows. 

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑆𝑐𝑎𝑙𝑒 𝐹𝑎𝑐𝑡𝑜𝑟 = 𝑘̅(
𝑅

𝑅 + ℎ
) 

Where 𝑘̅ is the average scale factor at a point, R is the average radius of the Earth, and h is the 

average height above the ellipsoid of the path. The ellipsoidal correction factor, also known as 

the elevation factor, transforms the surface of the Earth onto the surface of an ellipsoid by 

measuring the height difference. Thus, the combined scale factor ultimately transforms the 

surface of the Earth to a map project by first transforming to an ellipsoid, then using the scale 

factor, transforms to the map projection. 

Methodology 

Given mean radius of earth through the following equation: 

𝑅 =
2𝑎 + 𝑏

3
 

Where a and b are semi-major and semi-minor axis respectively. To compute the 

elevation factor, use the following equation: 

𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 =
𝑅

𝑅 + ℎ𝑎𝑣𝑔
 

Where R is the mean radius of earth and h is the ellipsoidal height. Next, use the 

following equation to compute the point scale factor, K: 

𝑘 =  𝐾𝑜(1 + 𝐺2𝑄
2(1 + 𝐺4𝑄

2)) 

 

Where Ko is a projection constant for the ellipsoid at a specific zone. G2 and G4 are: 

𝐺2 =
1

2
(1 + 𝜂2) 

𝐺4 =
1

12
(1 + 5𝜂2) 

And  𝜂2 can be calculated using the following equation: 



𝜂1
2 =

𝜀2

(1 − 𝜀2)
cos2 𝜙′ 

Where 𝜀2 is a projection constant for the ellipsoid at a specific a zone and 𝜙′ is foot 

point latitude Finally, Q can be calculated using the following equation: 

𝑄 =  
𝐸−𝐸𝑜

𝑁1𝐾𝑜
   

Therefore, the combined scale factor is simply: 

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑠𝑐𝑎𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 =  
𝑅

𝑅 + ℎ𝑎𝑣𝑔
∗  𝐾𝑜(1 + 𝐺2𝑄

2(1 + 𝐺4𝑄
2)) 

Processing Inputs 

 For this problem the inputs consist of arbitrary geodetic coordinates, 𝜙, 𝜆, and h which 

reside on the surface of a reference ellipsoid with semi-axes a and b. The specific datum used 

for this problem is the North American datum 83 (NAD83). 

Processing Outputs & Analysis 

 The output for this section is the combined scale factor which is defined as follows 

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑠𝑐𝑎𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 =  
𝑅

𝑅 + ℎ𝑎𝑣𝑔
∗  𝐾𝑜(1 + 𝐺2𝑄

2(1 + 𝐺4𝑄
2)) 

 The term 𝐾𝑜(1 + 𝐺2𝑄
2(1 + 𝐺4𝑄

2)) is an expansion that represents the average scale 

factor at a point. Here, Q is the auxiliary, and G2 and G4 are scale factor coefficients. 

 

 

 

 

 

 

 

 

 

 

 



Part D 

Introduction 

 This section is an expansion for Part B, where for the same initial values, the scale factor 

is determined. Then, expanding further, the scale factor is calculated for increases in height in 

the ellipsoid. 

Methodology 

5a)     

We are given the astronomical geodetic latitude and longitude, which have been 

calculated using lab group number 14: 

𝜙 = 45.025930 𝑁 

𝜆 = 281.52820 𝑊 

For λ, we must convert it into east, therefore: 

𝜆 =  3600 − 281.52820 = 78.47150 𝐸 

Using the point scale factor that was determined prior: 
𝑘 = 1.0002 

And the elevation scale factor which is defined as: 

𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 =
𝑅

𝑅 + ℎ𝑎𝑣𝑔
 

The combined scale factor can be calculated according to: 

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑆𝑐𝑎𝑙𝑒 𝐹𝑎𝑐𝑡𝑜𝑟 = 𝑘̅(
𝑅

𝑅 + ℎ
) 

Where: 

ℎ = 0 𝑚, 50𝑚, 100𝑚, 150𝑚, 𝑎𝑛𝑑 200𝑚 

A basic MATLAB script has been created to calculate the value of the combined scale 

factor. 

Processing Inputs 

 The inputs for this problem are straightforward. The inputs consist of the scale factor, 

which is determined prior, and the elevation factor, which is a ratio of the average radius of the 

Earth (6371 km) and the average radius of the Earth plus the height above the ellipsoid. For a 

height of 0m above the ellipsoid, the ratio becomes 1:1 which means that the combined scale 

factor is the same as the scale factor at the point.  



Processing Outputs & Analysis 

 For part a, the combined scale factor is 1.0002. This is the same as the scale factor 

because at an elevation of 0m above the ellipsoid, the elevation factor equates to 1. Ultimately 

this means that for the case of no elevation, the combined scale factor is equal to the scale 

factor at a point, k. 

For part b, the following table shows the different combined scale factors at different 

elevations above the ellipsoid. 

Height (m) Combined Scale Factor (unitless) 

50 1.000192150430463 

100 1.000184300984132 

150 1.000176451661003 

200 1.000168602461075 
 

 As the elevation above the ellipsoid increases, the projection becomes more and more 

skewed. As the elevation approaches infinity, the elevation factor, which is a ratio of 
𝑅

𝑅+ℎ
 

approaches 0. Since the combined scale factor is a product of the elevation factor and the 

average scale factor at a point, the result of an increasing elevation means the combined scale 

factor will decrease, as seen in the above trend. 

Software Structure  

 The software structure of the code is very straightforward. It is a script with no 

intermediary functions used to calculate the required outputs for the questions. The full code 

can be viewed in the appendix.  

General labor➔ 50% Yaseen and 50% Hunter 
 

 

 

 

 

 

 

 

 



Appendix 

Matlab code for Part B, 2 

%Parameters  

zone =  17; % zone number 

  
K_not = 0.9996;% Scale factor 

  
N_not = 0; % False northing 

  
E_not = 500000; % False easting 

  
phi_not = 0; % latitude of the grid origin 0 deg 

  
lambda_not = 1.413716694; % longitude of the grid origin 81 deg 

  
% GRS ellipsoid  parameters 
a = 6378137; % semi major axis 
ecen = 0.006694380023; % eccentricity  
r = 6367449.14577; %  

  
% Ellipsoid constants 
u0 = -0.005048250776;  
u2 = 0.000021259204; 
u4 = -0.000000111423;  
u6 = 0.000000000626; 

  
%latitude and longitude   
%phi  = 0.077559219;%latitude 
%lambda = 4.893237842;%longtitude 
phi = (45 + (1/60) + (31.3386/3600))*(pi/180); 
lambda = (360 - (281 +(31/60)+(42.7553/3600)))*(pi/180);  

  
% Rectifying latitude 
omega = phi + (sin(phi)*cos(phi))*(u0 + (cos(phi))^2*(u2 + (cos(phi))^2*(u4 + 

u6*(cos(phi))^2))); 

  
% Meridian distance 
s = K_not*omega*r; 
s_not = 0; 

  
% Radius of curvature 
R = (K_not*a) / sqrt(1 - (ecen)*(sin(phi))^2); 
zeta = (ecen / (1-ecen))*(cos(phi)^2) ; 

  
%defining terms R1 to R7 
A1 = -R; 
A2 = (1/2)*R*tan(phi); 
A3 = (1/6)*(1 - ((tan(phi))^2) + zeta); 
A4 = (1/12)*(5 - ((tan(phi))^2) + zeta*(9 + (4*zeta))); 
A5 = (1/120)*(5 - (18*((tan(phi))^2))+((tan(phi))^4) + zeta*(14 - 

58*((tan(phi))^2))); 



A6 = (1/360)*(61 - (58*((tan(phi))^2))+((tan(phi))^4) + zeta*(270-

330*((tan(phi))^2))); 
A7 = (1/5040)*(61 - (479*((tan(phi))^2))+(179*((tan(phi))^4)) - 

((tan(phi))^6)); 

  
% Last auxillary 
l = (lambda - lambda_not)*cos(phi); 

  
% Northing and Easting  
N = s - s_not + N_not + A2*(l^2)*(1 + (l^2)*(A4 + A6*(l^2))) 
E = E_not + A1*l*(1 + (l^2)*(A3 + (l^2)*(A5 + (l^2)*(A7*(l^2))))) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Matlab code for Part B, 3 

%Given  

N = 5107043.021; % Northing  
E = 727960.546 ; %Easting  

  
%Parameters  
zone =  17; % zone number 

  
K_not = 0.9996;% Scale factor 

  
N_not = 0; % False northing 

  
E_not = 500000; % False easting 

  
phi_not = 0; % latitude of the grid origin 0 deg 

  
lambda_not = 1.413716694; % longitude of the grid origin 81 deg 

  
S_not = 0; 

  
% GRS ellipsoid  parameters 
a = 6378137; % semi major axis 
ecen = 0.006694380023; % eccentricity  
r = 6367449.14577; %  

  
% Ellipsoid constants 
V0 = 0.005022893948; 
V2 = 0.000029370625; 
V4 = 0.000000235059; 
V6 = 0.000000002181; 

  
% Rectifying lat 
Omega = (N - N_not + S_not) / (K_not*r); 

  
% footpoint latitude 
phi_foot = Omega + (sin(Omega)*cos(Omega))*(V0 + (cos(Omega)^2)... 
    *(V2 + (cos(Omega)^2)*(V4 +V6*(cos(Omega)^2)))); 

  
% radius of curvature 
R = (K_not*a) / (1 - ecen*(sin(phi_foot).^2))^0.5; 

  
% auxillary 
Q = (E - E_not) / R; 

  
% Zeta 
zeta = (ecen / (1 - ecen))*(cos(phi_foot)^2); 
% A2 to A7 terms 
B2 = (-1/2)*tan(phi_foot)*(1 + zeta); 
B3 = (-1/6)*(1 + 2*(tan(phi_foot)^2) + zeta); 
B4 = (-1/12)*(5 + 3*(tan(phi_foot)^2) +... 
    zeta*(1 - 9*(tan(phi_foot)^2)) - 4*zeta); 
B5 = (1/120)*(5 + 28*(tan(phi_foot)^2) + 24*(tan(phi_foot)^4) +... 



    zeta*(6 + 8*(tan(phi_foot)^2))); 
B6 = (1/360)*(61 + 90*(tan(phi_foot)^2) + 45*(tan(phi_foot)^4) + ... 
    zeta*(46 - 252*(tan(phi_foot)^2) - 90*(tan(phi_foot)^4))); 
B7 = (-1/5040)*(61 + 662*(tan(phi_foot)^2) + 1320*(tan(phi_foot)^4)... 
    + 720*(tan(phi_foot)^6)); 
% L 
L = Q*(1 + (Q^2)*(B3 + (Q^2)*(B5 + B7*(Q^2)))); 

  
% Geodetic Latitude and Longitude 
phi = (phi_foot + B2*(Q^2)*(1 + (Q^2)*(B4 + B6*(Q^2))))*(180 / pi); 
lambda = (lambda_not - L / cos(phi_foot))*(180 / pi); 
phi = phi 
lambda = (360 - lambda)  

  
% Convergence Terms  
D1 = tan(phi_foot); 
D3 = (-1/3)*(1 + (tan(phi_foot)^2) - zeta - 2*(zeta^2)); 
D5 = (1/15)*(2 + 5*(tan(phi_foot)^2) + 3*(tan(phi_foot)^4)); 
% Convergence 
gama = (D1*Q*(1 + (Q^2)*(D3 + D5*(Q^2))))*(180 / pi); 

  

  
% Scale Factor  
G2 = (1/2)*(1 + zeta); % Scale factor term  
G4 = (1/12)*(1 + 5*zeta); % Scale factor term 

  
k = K_not*(1 + G2*(Q^2)*(1 + G4*(Q^2))) % scale factor  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Matlab code for Part D, a 

%latitude and longitude   

phi = 45.02593;        %In radians 
lambda = (360 - 281.5282);    %In radians 
h = 0;    %In meters 

  
%Mean radius of the earth 
R = 6371000;     %In meters 

  
%Elevation factor 
E = R/(R+h); 

  
%Point Scale factor 
k=1.0002; 

  
%combined scale factor 
C = k*E 
%in the command Window type "format long" to get the exact values 

 

Matlab code for Part D, b 

%In meters 
h1 = 50; 
h2 = 100; 
h3 = 150; 
h4 = 200; 
%Mean radius of the earth 
R = 6371000;     %In meters 

  
%Elevation factor 
E1 = R/(R+h1); 
E2 = R/(R+h2); 
E3 = R/(R+h3); 
E4 = R/(R+h4); 

  
%Point Scale factor 
k=1.0002; 

  
%combined scale factor 
C1 = k*E1 
C2 = k*E2 
C3 = k*E3 
C4 = k*E4 
%in the command Window type "format long" to get the exact values 

 

 

 


