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Executive summary=>»

This report provides an analysis and evaluation of the knowledge of various geodetic
concepts, specifically focusing on the analysis of ellipsoidal geometry, the transformations
between Cartesian and curvilinear coordinates, and geodetic positioning techniques. The
completion of this lab will provide better appreciation and comprehension of relevant concepts
for this course.

In the first section, the azimuth is calculated for provided points on the Earth’s surface
as modelled by the WGS1984 reference ellipsoid. Further, the length of the geodesic is
calculated in this section, along with the maximum height along the path between the provided
points.

The second section of the lab is based around the mathematics which defines spherical
and ellipsoidal geometry. Specifically, we discuss and prove radius of curvature in the prime
vertical and the first eccentricity in the second section.

In the third section we find the geocentric Cartesian coordinates when given the
translation components from the geocentric of Clark 1866 reference ellipsoid and in the same
section we Calculate its geodetic curvilinear coordinates in the WGS1984 reference ellipsoid for
a satellite having the following geocentric coordinates at a time instant.

In the final section, we use geodetic coordinates (¢, A) of a point, Q, using Puissant’s
short line equations, and given the geodetic coordinates of a terrain point P, which is referred
to by the WGS1984reference ellipsoid. We also Calculate the reverse geodetic azimuth aqp, and
the ellipsoidal distance Spq,
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Question (1-a)

Introduction

Two major components of geodesy are: knowing where a point of interest is and knowing how to
get there. While this may be a simple problem if worked out on a sphere, the reality is that the Earth is a
much more complicated shape, which is better approximated as an ellipsoid. To tackle the problem
defined in question 1, the WGS1984 reference ellipsoid is used in order to gain a more precise definition
of the azimuths between the two given points, the shortest distance between the two points, and the
highest elevation between the two points.

Methodology
The following approach to this problem employs Puissant’s inverse solution. First, an initial value
for the azimuth angle between point A and B is calculated.
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Then, this initial value can be used to determine the length of the geodesic (distance between points along
curve).
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With these initial values calculated, we have the basis for an iteration. Using these values in an iteration
of approximately 4 steps gives a solution with precision greater than 1 part in 1 billion (i.e. solution is
iterated until difference is less than 10°°). The following variables, T1 and T2, are intermediary and are
only used to find the next iteration of the azimuth and length of the geodesic.
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These intermediary values are then used to calculate the next iteration of azimuth and geodesic length
according to the following.
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To get the reverse azimuth — the azimuth from point B to A, we can apply the prior steps in reverse, or we
can take the following.
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Where Ao is defined as
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Finally, to compute the highest point between point A and B, we use the calculated length of the geodesic
to solve for the difference in latitude and longitude from the mean latitude and longitude between point A
and B. The equation to solve for latitude and longitude work out to the following.
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Processing Inputs

The static inputs for this problem are defined by WGS1984 reference ellipsoid, which has a semi-
major axis of 6,378,137 meters, and a semi-minor axis of 6,356,752.3142 meters. The variable inputs for
this problem are the latitude and longitude values for the points A and B. For group number 9, the values
calculated for the latitude and longitude of point A in degrees is 43.7° and 280.367° respectively. The
values calculated for the latitude and longitude of point B in degrees is 46.4° and 350.533° respectively.



Processing Outputs & Analysis

Applying the methodology yields an azimuth at point A to B of 60.84° and an azimuth at point B
to A of 293.72°. The length of the geodesic from point A to B (i.e. the shortest surface length) determined
is 5349198 meters. Finally, the highest point on the path between these points occurs at a latitude of 45.2°
North and longitude of 328° East.

By inspection, these values seem correct. The following 3D illustration of the Earth with these
points depicted reveals the illustrated azimuth angles to well represent the calculated values.

Further, we know that the length of the geodesic must be fairly close to the value of the arc length
for the same points mapped onto a sphere. A quick calculation reveals that the arc length of these points
on a sphere is equal to 5340135 meters which is fairly close to the value determined on the WGS1984
ellipsoid, which suggests the calculation should be valid.

Software Structure

The software structure is a straightforward script with two helper functions, one designed to make
converting to radians easer, and one designed to make the iteration component easier. The remainder of
the script is formula setup used to solve Puissant’s inverse formula.

The full software used for this question can be viewed in appendix A.



Question (2-b)
Introduction 2
Applying the methodology of trigonometry to show that the radius of curvature in the prime vertical.
Trigonometry is a methodology for finding some unknown elements of a triangle (or other geometric
shapes) provided the data includes an enough linear and angular measurements to define a shape uniquely.
Also, applying the concept of polar flattening to show that for the first eccentricity (e?) of the ellipsoid of
rotation at any point of geodetic latitude.

Methodology, processing input, Analysis and discussion =
To prove the following

N=—— (1)

We first consider the equation of an ellipse:
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where from this relationship, by using geometric trigonometry we differentiate and get the equation of a
tangent line to the curve at point A in figure 1
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From (3) and (4), we can find the equation of the normal line by taking the negative reciprocal

rang = 27 5
| | ang = - ®)
From the properties of an ellipse we know that



Therefore, we get

b=ay1—e? (7)

And rearranging (5) we get that
y=+1—e?tan¢px (8)
Therefore, substituting (7) for b and (8) fory

x? (1—-e®)?tan®px*
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simplifying we get
x> (1—e?)tan? px?
=t 2 =1 (10)
factoring x, we get
1 (1-e?)tan?¢
Xz (E + T =1 (11)
which is also equal to,
1+ (1—e?)tan?
x? ( e)an¢=1 (12)
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multiplying both sides by the reciprocal of the content in brackets
a2

Xt = 1+ (1—e?)tan?¢ (13)

which is also equal to
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Rearranging (14), we get
5 a? cos? ¢

X7 Cos? ¢+ (1—e?)sin?¢ (15)

and by using trigonometric identities
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x (1 —sin2¢)+ (1 —e2)sin2¢ (16)

and simplifying (16), we get
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Squaring both sides of (17), we get

. acos ¢ (18)
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And from figure 1 and using geometry, we know that,
x=Ncos¢ (19)
Substituting (18) in to (19) for x, we get

acos ¢

J1—e?sin? ¢

Which finally when diving both sides by cos ¢ gives us

= Ncos¢ (20)
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And to prove Eccentricity
We first consider the polar flattening which is defined by

a—b>b
f=— @1)
When (21) is rearranged we get,
a
s=1-f (@2
Eccentricity is also defined by
a? — b?
e? = p (23)
When (23) is rearranged we get
b2
e?=1- = (24)

Substituting (22) in (24) we get,

e?=1-(1-/)?* (25
And finally rearranging (25) we get,

e’ =2f — f? (26)
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Summary=>»

After doing some proofs and differentiate, found out that geometric trigonometry is an accurate method to
find any line or point in any shape. And in order to obtain the eccentricity, the polar flattening should take
in consideration as it’s a way to measure of the compression of a circle or sphere along a diameter to form
an ellipse or an ellipsoid of revolution (spheroid) respectively. As seen in the figure, this shape provides
us with the eccentricity as its highly related to the polar flattening

— —_

- -~
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Question (3)

Introduction 2

Since the Earth is flattened at the poles and bulges at the Equator, geodesy represents the figure of the Earth
as an oblate spheroid. The oblate (spheroid and ellipsoid), is an ellipsoid of revolution obtained by rotating
an ellipse about its shorter axis. Given the Clark 1866 geocentric reference ellipsoid we are supposed to
calculate the geodetic curvilinear coordinates in the WGS84 reference ellipsoid for a satellite having the
following geocentric coordinates at a time instant and calculate geocentric Cartesian coordinates.

Methodology, processing input and Analysis = Part (a)

The following geodetic coordinates for a terrain station, which have been converted to degrees
and modified to reflect the values assigned to group 9, are given as follow.

¢ = 44.295° N
A =90.89°F
h =260.26 m

Also, it is known to us from Clark 1866 reference ellipsoid that the translation components are
the following

X, = —25.82m
Y, = 168.10m
Zy, = 167.31m

Using the semimajor and semi-minor values for the Clarke 1866 reference ellipsoid, it is possible
to determine the following components.

B i

Here, h is the height from eII|p30|daI surface to a point on, above or below the Earth and normal
to the eellipsoidal surface.

(N + h)cos¢cos A
(N + h) cos ¢ sin /1‘

We know that ‘a’ the semi-major axis of the earth is 6.378137 x 10° m
And the ‘b’ the semi-minor axis is 6.3567523142 x 10° m

Now referring to (polar flattening) and substituting the values for a and b, we get

_a—b 6378137x10°— 6.3567523142x10° _ 33528106 x 10-3
/= N 6.378137 x 10° -

a
And from there, we use (polar flattening) to find eccentricity

2 =2f—f?=2(3.3528106 x 1073) x (3.3528106 x 1073)? = 6.69437986 x 1073
we now find N by using =

B a B 6.378137 x 10°
J1—e2sin2¢p /1 —(6.69437986 x 1073)2 X sin?(43.545306944)
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N = 6.3781625981 X 10°m
Using N we can figure out X, Y, and Z by using the transformation coordinates =»

x =(N+h)cos¢pcosi
x = (6.3781625981 x 106 + 260.26) X cos(44.295) x cos(90.89)
x =—71082.6122 m
y = (N+h)cos¢sini
y = (63781625981 X 10° + 260.26) X cos(44.295) x sin(90.89)

y = 4572413.0192m
b2
z= <Nﬁ+h)sm¢

(6.3567523142 x 10°)?
(6.378137 x 10¢)2

z = <6.3781625981 x 108 x + 260.26) sin(44.295)

z =4431591.2077m

Them an adjustment is done by adding the translation from the Clark 1866 reference ellipsoid,

x=x+X, =-71056.7921m
y=vy+Y, =4572581.1198m
z=z+7Z,=4431758.5184m

Methodology, processing input and Analysis = Part (b)

Given

Satellite geocentric coordinates:
Xs; = 4948685.566m
Y, = —3249478.132m
Z; = 3418646.589m

From the minor axis

p= \/xsz + Y2+ Z;2 = (N + h)cos¢ (1986.Ek, Edward. p326.)

p = 6836354.3985m

Next, we find an initial value for ¢ using
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o (L)

Referring to WGS84 we get that e = 0.081819190842621, and then we can find an initial value for ¢(®

Po = (30.17148172°)

Next, we determine an initial value for N, by using the semimajor and semi-minor values for the WGS1984
reference ellipsoid.

a2

Jazcos?¢ + b2sin2¢

No

63781372

N, =
° \/637813720052(30.17148172°° ) + 6356752.314225in%(30.17148172°)

Ny = 6397378.378 m

Then, we determine an initial value for h, as

p
= — N,
0 coso 0

__ 0920185551 107378378 = 450526.6478
0= £0s(30.17148172°) 8= oem

With these initial values, the basis for an iteration has been set up. It is possible to determine the next values
for the iteration by defining the kth value as a function on the prior terms as follows.

Ny = N(@*™h)
he = h(¢p*1,N®)
br = ¢(N(k),h(k))

After 4 iterations we find
¢ =26.7173°

N = 6382456.6405m
h =1271018.9821m

Now we find A by using

A=2t ‘1( S )
WX, P
. _1( —3249478.132 )
= <"1 1948685566 + 6836354.3985

A =-30.8302°
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Therefore, we finally get the following

b (26.7173°) (26.7173°)
H =| (-308302°) |=| (329.1698°)
nl [(1271018.9821m)| |[(1271018.9821m)

Discussion and brief concepts on transformations <2

Geocentric Cartesian coordinates are fixed to the rotating Earth, originating from the Earth's center. The
z-axis points through the geographic North Pole (and coincides with the Earth's axis of rotation). Geodetic
coordinates are often more convenient than spherical coordinates. In the geodetic coordinate system, the
coordinates are altitude, longitude, and latitude. The geodetic latitude and longitude are the same latitude
and longitude used in navigation and on maps. The geodetic and geocentric longitudes are the same. In
geometry, curvilinear coordinates are a coordinate system for Euclidean space in which the coordinate
lines may be curved. The conversion from curvilinear geodetic (4, ¢, h) to cartesian (X, y, z) coordinates
needs some inputs =

The conversion from curvilinear geodetic (4, ¢, &) to
Cartesian (x, y, z) coordinates is given by the well-known
equations:

x (N + h)cos pcos A
y p = (N + h)cos ¢ sin i 3)
z [N(1 — €*) + h]sin¢

X =(N+ h,)cos(g,)cos(A4,)
Y =(N+h,)cos(g,)sin(A,)
Z=[A-e*)N+ h,]sin(g,)

where e* =21 — ‘/': and N (North - South radius of curvature) is

N? =a*/[1-e*sin’(g,)] ‘

Description of software structure=»

The software built for this question is a straightforward script that sets up various equations in
order to calculate the satellites geodetic curvilinear coordinates. There are two helper functions, one to
facilitate conversions between degrees and radians, and one that eases the process of the iterations.

The full code for question 3 can be seen in Appendix B
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Question (4)

Introduction=>»
Calculate the geodetic coordinates (¢, 1) of point Q using Puissant’s short line equations, the reverse

geodetic azimuth and the ellipsoidal distance with given observations and approximate coordinates. There
after we can use equations from the book (UNB) to get the reverse geodetic azimuth op, and the

ellipsoidal distance Spo.

Methodology, processing input, Analysis and Description of software structure = (a, b and c)
Using Puissant’s Equation we solve the direct problem as follows

We first find M using
a(l—e? a
M = ( ) 3 N=—=———
(1 — e?sin? ¢)2 1 - eZsin?¢

We then Approximate A¢ using

2 3
Ad)_ﬁ —it ¢; sin? _SL sin?a;i(1 + 3tan?¢;) + -
=%, cos aq, 2NZ an ¢; sin“a;; 6Ni3 cos a;; sin“a;; an“g;

From there we can solve for A¢ using

2 2 3 2 2
sijcosa;j  sijtang; sin“a;;  sjjcos a;; sin“a;;(1 4+ 3tan® ;)

AP =
¢ M; 2M;N; 6M;N?

*<1 3e?sin ¢; cos ¢; (Aqb))

21 —e%sin?¢g) \ 1
And find ¢, using

¢j=¢;+A¢d

Now we can find N,

From there we can find AA using

2
[ Sij . Sij .2 2
A = ﬁjsmaiﬁ%% 1—6—,\,];(1—51" a;j sec’ ¢; )

And now we find 4,
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Thereafter, we find A« using

Ap AA3 A A
Aa = (AA sin ¢y, sec7¢ + D) (sin Om sec7¢ — sin3 ¢,, sec® <7¢) + oo ))

And to find @j; we use
aﬁ = aij + Aa + 180°
Where

..
sij = 2Rsin™? <ﬁ>

2
I Arii’ — (b — )
ij — ]
h; h;
(1 + m) (1 + m)

B =5 (R(@) + R@)
o M;N,

- i 2 2
M; sina;j* + Nicos ajj

R — M;N;

7 Mjsina;? + Njcos af;

1
bm = E(d’i + ¢;)
Givens at point P9

¢; = 45.6725°N
A; = 66.04366°W
h; = 155.52m

Approximate coordinates of Q9
¢; = 45°32N
A = 66.29806°W
h; = 155.52m

Other Parameters given®

a; = 297°18'59.13"
Zpo = 80°44'46.83"
ppg = 25,363.823 m
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We first find A¢g and AZ (we have the values and the equations)
As, Ag is given in iterations, which is equal to

Ap = —0.065593350115222

A¢p = —0.065567237188703

A¢p = —0.065567217530277

Ap = —0.065567217515478
So Al is

AA = —0.290396704721729

Using the above then we compute in MATLAB an iterative algorithm to find that the result is after 4
iterations

¢ =45.606932782484520°N
A =65.753263295278273°E

Part B
Using the following equation, we equate the reverse geodetic Azimuth

N;AA 3eZsin2¢;  \|
af; = tan []— cosp; (1 L )]

M;A¢p 4(1 — e%sin?¢;)
Using (Aa) we find

Aa = —0.208251887580058
Using (af; j) we compute &gp, which gives

agp =177.1077°

Part C
Puissant’s solution to the inverse problem on an ellipsoid=» we can get the values Ap, M; , ¢; and @;; from
MATLAB code

A M;
Y cosay; 1 3e25i1122¢i9¢
4(1 — e?sin?¢;)

SE

Computing Spg, which gives

Spo = 23.1335077 km
software structure =2
The software has been explained literally by using the functions, equations and values step by step
(applied all the equations on MATLAB). Also, we did iteration for (diphi which it should be larger than
the epsilon to obtain the values for ¢p and 4). Check out appendix C

Summary=>»

In this section we are more familiar with the properties of the ellipsoidal geometry and transformations
between Cartesian and curvilinear coordinates, and reduction of observations to the ellipsoid and the
techniques involved in computing geodetic positions on the ellipsoid both direct and inverse problems.
Also, we become capable of performing the relevant calculation and applications in practice. We also
understand the geometric relationship of the ellipse with respect to the Cartesian.
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Appendix A

numpy np

‘toRad(theta):
theta * (np.pi / 180@)

(lam_A + lam_B})

dl = lam B - lam A
dp = phi phi A
np.sqrt((a**2 - b
a / np.sqri(1l - ((e (np.sin(phi_A)**2)))
a / np.sqri(l - ((e**2)*(np.sin(phi_B)**2)))
(Na + Nb)

(1-e (1 - ((e (np.sin{phi_a)
(1 - ((e {np.sin{phi_B)

Mb)

dp*(Ma / (1 - (( 2)*np.sin{phi_A)*np in(phi_A)**2)))))))
(((sijk**2)*np.tan(phi_A)*(np.sin(aijk) )
(((sif il ijk} ] 6 2)))

aijkl = np.arctan(T1/T2)
sijki = T1 / np.sin(aijk1)
(aijk1, sijk1)
np.arctan((d1*Nb / np.arccos(phi_B)) ((dp*Ma) (&8 ((3*(e**2)*np.sin(phi_A)*np.cos(phi_A)*dp) (1 - ((e**2)*(np.sin{phi_A)**2)))))})))
(dl * Nb) / (np.arccos(phi_B) * np.sin(aij))

getNextIter(aij, sij)

sij))

sijkm = sij

aij, sij = getNextIter(aij, sij)

aij))

sij))

3)/12) * ((np.sin(phi_M)*np.arccos(dp/2)) - ((np.sin(phi_M)**3)*(np.arccos(dp/2})

da - (dl*np.sin(phi_M)*np.arccos(dp/2)) + (((dl
aji - aij + da + np.pi

(aij + aji)

Nm
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Appendix B

numpy np

toRad(theta):
theta * (np.pi / 1

solve():

(a-b)/a
np.sqrt({a**2

h

N = a / np.sgrt(l - ((e**2)*(np.sin(phi)**2}))

(N + h)*np.cos(phi)*np.cos(lam) + x@

(N + h)*np.cos(phi)*np.sin(lam) + y@
(N*((b**2}/({a**2)) h)*np.sin(phi) + z@

(a - b)
np.sqrt((a

P = np.sgrt((xs**2) + (ys
print(P)

Py*(1/ (1 )))
np.sqrt{(a**2)*(np.cos(phi_@&)**2) + (b**2)*(np.sin(phi_8)**2))
(P / np.cos(phi_@)) - N_@
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getNextIter(p, n, h):
_p = np.arctan(zs / P) / (1 - ((e**2)*n) (n + h))
_n = (a**2) / np.sqrt((a**2)*(np.cos(p)**2) + (b**2)*(np.sin(p)**2))
_h = (P / np.cos(p)}) - n

(p, _n, _h)
(phi_1, MN_1, h 1) = getNextIter(phi_®, N_&, h_8)
dp = np.abs(phi_1 - phi @)
dN = np.abs(N_1 - N_@)
dh = np.abs(h_1 - h_@)
dp > 18
phi & = phi_1

N® - N1
he-hi

(phi_1, N 1, h 1) = getNextIter(phi_@, N_©, h_8)

dp = np.abs(phi_1 - phi_@)
dN = np.abs(N_1 - N_8)
dh = np.abs(h_1 - h_8)

orint(phi_1)

{(phi_1 * (128 / np.pi)) % 9@
h 1

lam = (2*np.arctan(ys / (xs + P)) ( np.pi))

orint("the geodetic curvilinear coordinates are:"™)
("latitdue: ™ + s phi) + " degrees north")

yrint("longitude: ™ + str(lam) + " degrees east™)

rint("height: " + str(h) + " meters™)

__main__":
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Appendix C
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