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Executive summary➔ 
 

  This report provides an analysis and evaluation of the knowledge of various geodetic 
concepts, specifically focusing on the analysis of ellipsoidal geometry, the transformations 
between Cartesian and curvilinear coordinates, and geodetic positioning techniques. The 
completion of this lab will provide better appreciation and comprehension of relevant concepts 
for this course.  
 

In the first section, the azimuth is calculated for provided points on the Earth’s surface 
as modelled by the WGS1984 reference ellipsoid. Further, the length of the geodesic is 
calculated in this section, along with the maximum height along the path between the provided 
points.  

 
The second section of the lab is based around the mathematics which defines spherical 

and ellipsoidal geometry. Specifically, we discuss and prove radius of curvature in the prime 
vertical and the first eccentricity in the second section. 

 
In the third section we find the geocentric Cartesian coordinates when given the 

translation components from the geocentric of Clark 1866 reference ellipsoid and in the same 
section we Calculate its geodetic curvilinear coordinates in the WGS1984 reference ellipsoid for 
a satellite having the following geocentric coordinates at a time instant. 

 
In the final section, we use geodetic coordinates (φ, λ) of a point, Q, using Puissant’s 

short line equations, and given the geodetic coordinates of a terrain point P, which is referred 
to by the WGS1984reference ellipsoid. We also Calculate the reverse geodetic azimuth αQP, and 

the ellipsoidal distance SPQ. 

 

 
General Labor ➔ Yaseen (50%) and Hunter (50%)  
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Question (1-a) 
Introduction 

 Two major components of geodesy are: knowing where a point of interest is and knowing how to 

get there. While this may be a simple problem if worked out on a sphere, the reality is that the Earth is a 

much more complicated shape, which is better approximated as an ellipsoid. To tackle the problem 

defined in question 1, the WGS1984 reference ellipsoid is used in order to gain a more precise definition 

of the azimuths between the two given points, the shortest distance between the two points, and the 

highest elevation between the two points. 

 

Methodology 

 The following approach to this problem employs Puissant’s inverse solution. First, an initial value 

for the azimuth angle between point A and B is calculated. 

 

 

 

 (1) 

 

 

 

Then, this initial value can be used to determine the length of the geodesic (distance between points along 

curve).  

 

 

 

(2) 

 

 

With these initial values calculated, we have the basis for an iteration. Using these values in an iteration 

of approximately 4 steps gives a solution with precision greater than 1 part in 1 billion (i.e. solution is 

iterated until difference is less than 10-9). The following variables, T1 and T2, are intermediary and are 

only used to find the next iteration of the azimuth and length of the geodesic. 

 

 

 

 

(3) 

 

 

 

 

 

   

(4) 
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These intermediary values are then used to calculate the next iteration of azimuth and geodesic length 

according to the following. 

 

 

 

(5) 

 

 

 

 

 

(6) 

 

 

 

To get the reverse azimuth – the azimuth from point B to A, we can apply the prior steps in reverse, or we 

can take the following.  

 

 

(7) 

 

 

 

Where Δα is defined as 

 

(8) 

Finally, to compute the highest point between point A and B, we use the calculated length of the geodesic 

to solve for the difference in latitude and longitude from the mean latitude and longitude between point A 

and B. The equation to solve for latitude and longitude work out to the following. 

 

 

(9) 

 

 

 

 

 

(10) 
 

 
Processing Inputs 

 The static inputs for this problem are defined by WGS1984 reference ellipsoid, which has a semi-

major axis of 6,378,137 meters, and a semi-minor axis of 6,356,752.3142 meters. The variable inputs for 

this problem are the latitude and longitude values for the points A and B. For group number 9, the values 

calculated for the latitude and longitude of point A in degrees is 43.7° and 280.367° respectively. The 

values calculated for the latitude and longitude of point B in degrees is 46.4° and 350.533° respectively. 
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Processing Outputs & Analysis 

 Applying the methodology yields an azimuth at point A to B of 60.84° and an azimuth at point B 

to A of 293.72°. The length of the geodesic from point A to B (i.e. the shortest surface length) determined 

is 5349198 meters. Finally, the highest point on the path between these points occurs at a latitude of 45.2° 

North and longitude of 328° East.  
 

 By inspection, these values seem correct. The following 3D illustration of the Earth with these 

points depicted reveals the illustrated azimuth angles to well represent the calculated values.  

 
  

 Further, we know that the length of the geodesic must be fairly close to the value of the arc length 

for the same points mapped onto a sphere. A quick calculation reveals that the arc length of these points 

on a sphere is equal to 5340135 meters which is fairly close to the value determined on the WGS1984 

ellipsoid, which suggests the calculation should be valid.  

 

Software Structure 

 The software structure is a straightforward script with two helper functions, one designed to make 

converting to radians easer, and one designed to make the iteration component easier. The remainder of 

the script is formula setup used to solve Puissant’s inverse formula. 

 

The full software used for this question can be viewed in appendix A. 
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Question (2-b) 
Introduction➔  

Applying the methodology of trigonometry to show that the radius of curvature in the prime vertical. 

Trigonometry is a methodology for finding some unknown elements of a triangle (or other geometric 

shapes) provided the data includes an enough linear and angular measurements to define a shape uniquely. 

Also, applying the concept of polar flattening to show that for the first eccentricity (𝑒2) of the ellipsoid of 

rotation at any point of geodetic latitude. 

 

Methodology, processing input, Analysis and discussion ➔  

To prove the following  

 

𝑁 =
𝑎

√1 − 𝑒2𝑠𝑖𝑛2𝜙
                                                      (1) 

 

We first consider the equation of an ellipse:  

 

𝑥2

𝑎2
+

𝑦2

𝑏2
= 1                                                                  (2) 

 

where from this relationship, by using geometric trigonometry we differentiate and get the equation of a 

tangent line to the curve at point A in figure 1 

 

 
 

𝜕𝑦

𝜕𝑥
= −

𝑏2

𝑎2

𝑥

𝑦
                      (3) 

 

−cot𝜙 =
𝜕𝑦

𝜕𝑥
=

∆𝑦

∆𝑥
=

𝑟𝑖𝑠𝑒

𝑟𝑢𝑛
          (4) 

 

From (3) and (4), we can find the equation of the normal line by taking the negative reciprocal 

 

𝑡𝑎𝑛𝜙 =
𝑎2

𝑏2

𝑦

𝑥
                         (5) 

From the properties of an ellipse we know that  
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1 − 𝑒2 =
𝑏2

𝑎2
             (6) 

 

 

Therefore, we get  

𝑏 = 𝑎√1 − 𝑒2                     (7) 

 

 

 

 

And rearranging (5) we get that  

 

𝑦 = √1 − 𝑒2 tan𝜙 𝑥               (8) 

 

Therefore, substituting (7) for b and (8) for y 

 

𝑥2

𝑎2
+

(1 − 𝑒2)2 tan2 𝜙 𝑥2

𝑎2(1 − 𝑒2)
= 1               (9) 

 

simplifying we get 

 

𝑥2

𝑎2
+

(1 − 𝑒2) tan2 𝜙 𝑥2

𝑎2
= 1               (10) 

factoring x, we get 

 

𝑥2 (
1

𝑎2
+

(1 − 𝑒2) tan2 𝜙

𝑎2 ) = 1               (11) 

which is also equal to,  

 

𝑥2 (
1 + (1 − 𝑒2) tan2 𝜙

𝑎2 ) = 1               (12) 

multiplying both sides by the reciprocal of the content in brackets  

 

𝑥2 =
𝑎2

1 + (1 − 𝑒2) tan2 𝜙
          (13) 

which is also equal to  

 

𝑥2 =
𝑎2

1 + (1 − 𝑒2) (
sin2 𝜙
cos2 𝜙

)
          (14) 

 

Rearranging (14), we get  

 

𝑥2 =
𝑎2 cos2 𝜙

cos2 𝜙 + (1 − 𝑒2) sin2 𝜙
          (15) 

and by using trigonometric identities 
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𝑥2 =
𝑎2 cos2 𝜙

(1 − sin2 𝜙) + (1 − 𝑒2) sin2 𝜙
          (16) 

and simplifying (16), we get 

 

𝑥2 =
𝑎2 cos2 𝜙

1 − 𝑒2 sin2 𝜙
          (17) 

 

Squaring both sides of (17), we get  

 

𝑥 =
𝑎 𝑐𝑜𝑠 𝜙

√1 − 𝑒2 sin2 𝜙
          (18) 

 

And from figure 1 and using geometry, we know that,  

 

𝑥 = 𝑁 cos𝜙                (19) 

 

Substituting (18) in to (19) for x, we get 

 
𝑎 𝑐𝑜𝑠 𝜙

√1 − 𝑒2 sin2 𝜙
= 𝑁 cos𝜙        (20)  

Which finally when diving both sides by 𝒄𝒐𝒔𝝓 gives us  

 

𝑵 =
𝒂

√𝟏 − 𝒆𝟐𝒔𝒊𝒏𝟐𝝓
           (𝟐𝟎) 

 

And to prove Eccentricity  

We first consider the polar flattening which is defined by 

𝑓 =
𝑎 − 𝑏

𝑎
                          (21) 

When (21) is rearranged we get, 

 
𝑎

𝑏
= 1 − 𝑓          (22) 

Eccentricity is also defined by  

 

𝑒2 = 
𝑎2 − 𝑏2

𝑎2
            (23) 

 

When (23) is rearranged we get  

 

𝑒2 = 1 −
𝑏2

𝑎2
              (24) 

 

Substituting (22) in (24) we get,  

 

𝑒2 = 1 − (1 − 𝑓)2     (25) 

And finally rearranging (25) we get,  

 

𝒆𝟐 = 𝟐𝒇 − 𝒇𝟐                     (𝟐𝟔) 



10 

 

Summary➔  

 

After doing some proofs and differentiate, found out that geometric trigonometry is an accurate method to 

find any line or point in any shape. And in order to obtain the eccentricity, the polar flattening should take 

in consideration as it’s a way to measure of the compression of a circle or sphere along a diameter to form 

an ellipse or an ellipsoid of revolution (spheroid) respectively. As seen in the figure, this shape provides 

us with the eccentricity as its highly related to the polar flattening  
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Question (3) 
 

Introduction ➔ 

Since the Earth is flattened at the poles and bulges at the Equator, geodesy represents the figure of the Earth 

as an oblate spheroid. The oblate (spheroid and ellipsoid), is an ellipsoid of revolution obtained by rotating 

an ellipse about its shorter axis. Given the Clark 1866 geocentric reference ellipsoid we are supposed to 

calculate the geodetic curvilinear coordinates in the WGS84 reference ellipsoid for a satellite having the 

following geocentric coordinates at a time instant and calculate geocentric Cartesian coordinates. 

 

Methodology, processing input and Analysis➔ Part (a) 

 

The following geodetic coordinates for a terrain station, which have been converted to degrees 

and modified to reflect the values assigned to group 9, are given as follow. 

 

𝜙 = 44.295° 𝑁  
𝜆 = 90.89° 𝐸  
ℎ = 260.26 𝑚  

 

Also, it is known to us from Clark 1866 reference ellipsoid that the translation components are 

the following 

 

𝑋0 = −25.82𝑚 

 𝑌0 = 168.10𝑚 

𝑍0 = 167.31𝑚 

 

Using the semimajor and semi-minor values for the Clarke 1866 reference ellipsoid, it is possible 

to determine the following components. 

[
𝑥
𝑦
𝑧
] =

[
 
 
 
 
(𝑁 + ℎ) cos𝜙 𝑐𝑜𝑠 𝜆

(𝑁 + ℎ) cos𝜙 𝑠𝑖𝑛 𝜆

(𝑁
𝑏2

𝑎2
+ ℎ)sin𝜙

]
 
 
 
 

                           

Here, h is the height from ellipsoidal surface to a point on, above or below the Earth and normal 

to the eellipsoidal surface. 

 

We know that ‘a’ the semi-major axis of the earth is 6.378137 x 106 m 

And the ‘b’ the semi-minor axis is 6.3567523142 x 106 m 

 

Now referring to (polar flattening) and substituting the values for a and b, we get 

 

𝑓 =
𝑎 − 𝑏

𝑎
=

6.378137 x 106 −  6.3567523142 x 106

6.378137 x 106
=  3.3528106 × 10−3 

And from there, we use (polar flattening) to find eccentricity 

 

𝑒2 = 2𝑓 − 𝑓2 = 2(3.3528106 × 10−3) × (3.3528106 × 10−3)2 = 6.69437986 × 10−3 

 

we now find N by using ➔ 

 

𝑁 =
𝑎

√1 − 𝑒2𝑠𝑖𝑛2𝜙
=

6.378137 × 106

√1 − (6.69437986 × 10−3)2  ×  𝑠𝑖𝑛2(43.545306944)
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𝑁 = 6.3781625981 × 106𝑚 

Using N we can figure out X, Y, and Z by using the transformation coordinates ➔ 

 

𝑥 = (𝑁 + ℎ) cos𝜙 cos 𝜆 

 
𝑥 = (6.3781625981 × 106 + 260.26)×  cos(44.295) × cos(90.89)  

 
x = −71082.6122 m 

 

𝑦 = (𝑁 + ℎ) cos𝜙 sin 𝜆 

 
𝑦 = (6.3781625981 × 106 + 260.26)× cos(44.295) × sin(90.89) 

 
𝑦 = 4572413.0192𝑚 

 

       𝑧 = (𝑁
𝑏2

𝑎2
+ ℎ) sin𝜙 

 

   𝑧 = (6.3781625981 × 106 ×
(6.3567523142 × 106)2

(6.378137 × 106)2
+ 260.26)sin(44.295) 

 

𝑧 = 4431591.2077𝑚 

 

 

 

Them an adjustment is done by adding the translation from the Clark 1866 reference ellipsoid, 

 

𝑥 = 𝑥 + 𝑋𝑜 = −71056.7921𝑚 
𝑦 = 𝑦 + 𝑌𝑜 = 4572581.1198𝑚 
𝑧 = 𝑧 + 𝑍𝑜 = 4431758.5184𝑚 

 

 

Methodology, processing input and Analysis➔ Part (b)  

 

Given  

Satellite geocentric coordinates: 

𝑋𝑠 = 4948685.566𝑚 
𝑌𝑠 = −3249478.132𝑚 
𝑍𝑠 = 3418646.589𝑚 

 

From the minor axis 

𝑝 = √𝑋𝑠
2 + 𝑌𝑠

2 + 𝑍𝑠
2  = (𝑁 + ℎ)𝑐𝑜𝑠𝜙               ( 1986. Ek, Edward. p326. )     

 

 𝑝 = 6836354.3985𝑚 

 

Next, we find an initial value for 𝜙 using  
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𝜙0 = tan−1 [
𝑧

𝑝
(

1

1 − 𝑒2
)]              

 

Referring to WGS84 we get that e = 0.081819190842621, and then we can find an initial value for 𝜙(0) 

 

𝜙0 = (30.17148172°)  
 

Next, we determine an initial value for 𝑁0 by using the semimajor and semi-minor values for the WGS1984 

reference ellipsoid. 

 

 

𝑁0 =
𝑎2

√𝑎2𝑐𝑜𝑠2𝜙 + 𝑏2𝑠𝑖𝑛2𝜙
                 

 

𝑁0 = 
63781372

√63781372𝑐𝑜𝑠2(30.17148172°° ) + 6356752.31422𝑠𝑖𝑛2(30.17148172° )
 

 

𝑁0 = 6397378.378 𝑚 

 

Then, we determine an initial value for ℎ0 as 

 

ℎ0 =
𝑝

𝑐𝑜𝑠𝜙
− 𝑁0                        

 

ℎ0 =
5920185.551

cos(30.17148172°)
− 6397378.378 = 450526.6478 𝑚 

With these initial values, the basis for an iteration has been set up. It is possible to determine the next values 

for the iteration by defining the kth value as a function on the prior terms as follows. 

 

𝑁𝑘 = 𝑁(𝜙𝑘−1) 

ℎ𝑘 = ℎ(𝜙𝑘−1, 𝑁(𝑘)) 

𝜙𝑘 = 𝜙(𝑁(𝑘), ℎ(𝑘)) 

 

After 4 iterations we find  

 

𝜙 = 26.7173° 
𝑁 = 6382456.6405𝑚 
ℎ = 1271018.9821 𝑚 

 

 

Now we find 𝜆 by using  

 

𝜆 = 2 tan−1 (
𝑌𝑠

𝑋𝑠 + 𝑃
)                   

 

𝜆 =  2 tan−1 (
−3249478.132

4948685.566 + 6836354.3985
)              

 

𝜆 = −30.8302° 
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Therefore, we finally get the following  

 

[
𝜙
𝜆
ℎ
] = [

(26.7173°)
(−30.8302°)

(1271018.9821𝑚)
] = [

(26.7173°)
(329.1698°)

(1271018.9821𝑚)
]  

 

 

Discussion and brief concepts on transformations➔  
Geocentric Cartesian coordinates are fixed to the rotating Earth, originating from the Earth's center. The 

z-axis points through the geographic North Pole (and coincides with the Earth's axis of rotation). Geodetic 

coordinates are often more convenient than spherical coordinates. In the geodetic coordinate system, the 

coordinates are altitude, longitude, and latitude. The geodetic latitude and longitude are the same latitude 

and longitude used in navigation and on maps. The geodetic and geocentric longitudes are the same. In 

geometry, curvilinear coordinates are a coordinate system for Euclidean space in which the coordinate 

lines may be curved. The conversion from curvilinear geodetic (𝜆, 𝜙, ℎ) to cartesian (x, y, z) coordinates 

needs some inputs ➔  

 
 

Description of software structure➔ 

 The software built for this question is a straightforward script that sets up various equations in 

order to calculate the satellites geodetic curvilinear coordinates. There are two helper functions, one to 

facilitate conversions between degrees and radians, and one that eases the process of the iterations. 

 

The full code for question 3 can be seen in Appendix B 
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Question (4) 
 

Introduction➔ 

Calculate the geodetic coordinates (𝜑, 𝜆) of point Q using Puissant’s short line equations, the reverse 

geodetic azimuth and the ellipsoidal distance with given observations and approximate coordinates. There 

after we can use equations from the book (UNB) to get the reverse geodetic azimuth αQP, and the 

ellipsoidal distance SPQ.   

 

 Methodology, processing input, Analysis and Description of software structure ➔ (a, b and c)  
Using Puissant’s Equation we solve the direct problem as follows 
We first find M using  

𝑀 =
𝑎(1 − 𝑒2)

(1 − 𝑒2 sin2 𝜙)
3
2

             𝑵 =
𝒂

√𝟏 − 𝒆𝟐𝒔𝒊𝒏𝟐𝝓
 

 
 

We then Approximate ∆𝝓 using 
 

∆𝜙 =
𝑠𝑖𝑗

𝑁𝑖
cos 𝛼12 −

𝑠𝑖𝑗
2

2𝑁𝑖
2 tan𝜙𝑖 𝑠𝑖𝑛

2𝛼𝑖𝑗 −
𝑠𝑖𝑗

3

6𝑁𝑖
3 cos 𝛼𝑖𝑗 𝑠𝑖𝑛2𝛼𝑖𝑗(1 + 3𝑡𝑎𝑛2𝜙𝑖) + ⋯ 

 
 

From there we can solve for ∆𝝓 using 
 
 

∆𝜙 = (
𝑠𝑖𝑗 cos 𝛼𝑖𝑗

𝑀𝑖
−

𝑠𝑖𝑗
2 tan𝜙𝑖 𝑠𝑖𝑛

2𝛼𝑖𝑗

2𝑀𝑖𝑁𝑖
−

𝑠𝑖𝑗
3 cos𝛼𝑖𝑗 𝑠𝑖𝑛2𝛼𝑖𝑗(1 + 3𝑡𝑎𝑛2𝜙𝑖)

6𝑀𝑖𝑁𝑖
2

∗ …(1 −
3𝑒2 sin𝜙𝑖 cos𝜙𝑖

2 (1 − 𝑒2 sin2 𝜙𝑖)
 (

Δ𝜙

1
))) 

And find 𝝓𝟐 using 
 

𝜙𝑗 = 𝜙𝑖 + ∆𝜙 

 
 

Now we can find N2 
 

From there we can find ∆𝝀 using 
 

∆𝜆 = (
𝑠𝑖𝑗

𝑁𝑗
sin 𝛼𝑖𝑗 𝑠𝑒𝑐𝜙𝑗 (1 −

𝑠𝑖𝑗
2

6𝑁𝑗
2 (1 − 𝑠𝑖𝑛2𝛼𝑖𝑗 sec2 𝜙𝑗  ))) 

 

And now we find 𝝀𝟐 
 

𝜆𝑗 = 𝜆𝑖 + ∆𝜆 
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Thereafter, we find ∆𝜶 using 
 

∆𝛼 = (∆𝜆 sin𝜙𝑚 sec
∆𝜙

2
+

∆𝜆3

12
(sin𝜙𝑚 sec

∆𝜙

2
− sin3 𝜙𝑚 sec3 (

∆𝜙

2
) + ⋯)) 

And to find 𝜶𝒋𝒊 we use 

 

𝛼𝑗𝑖 = 𝛼𝑖𝑗 + ∆𝛼 + 180° 
 

Where 

𝑠𝑖𝑗 = 2𝑅𝑠𝑖𝑛−1 (
𝑙𝑖𝑗

2𝑅𝑚
) 

 

𝑙𝑖𝑗 = √
∆𝑟𝑖𝑗

2 − (ℎ𝑗 − ℎ𝑖)
2

(1 +
ℎ𝑖
𝑅𝑚

)(1 +
ℎ𝑗

𝑅𝑚
)

 

 

𝑅𝑚 =
1

2
(𝑅𝑖(𝛼) + 𝑅𝑗(𝛼)) 

𝑅𝑖 =
𝑀𝑖𝑁𝑖

𝑀𝑖 sin𝛼𝑖𝑗
2 + 𝑁𝑖cos 𝛼𝑖𝑗

2  

 

𝑅𝑗 =
𝑀𝑗𝑁𝑗

𝑀𝑗 sin𝛼𝑖𝑗
2 + 𝑁𝑗cos 𝛼𝑖𝑗

2  

 

𝜙𝑚 =
1

2
(𝜙𝑖 + 𝜙𝑗) 

 

Givens at point P➔ 
 

𝜙𝑖 = 45.6725°𝑁 
𝜆𝑖 = 66.04366°𝑊 

ℎ𝑖 = 155.52𝑚 
 

Approximate coordinates of Q➔ 

𝜙𝑗 = 45°32𝑁 

𝜆𝑗 = 66.29806°𝑊 

ℎ𝑗 = 155.52𝑚 
 

 

Other Parameters given➔ 
 

𝛼𝑖𝑗 = 297°18′59.13" 

𝑍𝑃𝑄 = 80°44′46.83" 

𝜌𝑃𝑄 = 25,363.823 𝑚 
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We first find ∆𝜙 and ∆𝜆 (we have the values and the equations) 

As, ∆𝜙 is given in iterations, which is equal to 
 

∆𝜙 = −0.065593350115222 

∆𝜙 = −0.065567237188703 

∆𝜙 = −0.065567217530277 

∆𝜙 = −0.065567217515478 

So ∆𝜆 is 

∆𝜆 =  −0.290396704721729 
 
Using the above then we compute in MATLAB an iterative algorithm to find that the result is after 4 
iterations 

 

𝝓 = 𝟒𝟓. 𝟔𝟎𝟔𝟗𝟑𝟐𝟕𝟖𝟐𝟒𝟖𝟒𝟓𝟐𝟎°𝑵 

𝝀 = 𝟔𝟓. 𝟕𝟓𝟑𝟐𝟔𝟑𝟐𝟗𝟓𝟐𝟕𝟖𝟐𝟕𝟑°𝑬 

 

Part B 
Using the following equation, we equate the reverse geodetic Azimuth 

𝛼𝐸
𝑖𝑗 = 𝑡𝑎𝑛 [

𝑁𝑗∆𝜆

𝑀𝑖∆𝜙
𝑐𝑜𝑠𝜙𝑗 (1 −

3𝑒2𝑠𝑖𝑛2𝜙𝑖

4(1 − 𝑒2𝑠𝑖𝑛2𝜙𝑖)
)]

−1

 

Using (∆𝛼) we find 

∆𝛼 = −0.208251887580058 

Using (𝛼𝐸
𝑖𝑗) we compute 𝛼𝑄𝑃, which gives 

 

𝜶𝑸𝑷 = 𝟏𝟕𝟕. 𝟏𝟎𝟕𝟕° 
 
 

Part C 

Puissant’s solution to the inverse problem on an ellipsoid➔ we can get the values ∆𝜙, 𝑀𝑖 , 𝜙𝑖 and 𝛼𝑖𝑗 from 

MATLAB code  
 

𝑆𝐸
𝑖𝑗 =

∆𝜙

𝑐𝑜𝑠𝛼𝑖𝑗

𝑀𝑖

1 −
3𝑒2𝑠𝑖𝑛2𝜙𝑖∆𝜙

4(1 − 𝑒2𝑠𝑖𝑛2𝜙𝑖)

 

 

Computing 𝑆𝑃𝑄, which gives 

 

𝑺𝑷𝑸 = 𝟐𝟑. 𝟏𝟑𝟑𝟓𝟎𝟕𝟕 𝐤𝐦 

software structure➔  

The software has been explained literally by using the functions, equations and values step by step 

(applied all the equations on MATLAB). Also, we did iteration for (diphi which it should be larger than 

the epsilon to obtain the values for 𝝓 𝒂𝒏𝒅 𝝀). Check out appendix C 
 

Summary➔  

In this section we are more familiar with the properties of the ellipsoidal geometry and transformations 

between Cartesian and curvilinear coordinates, and reduction of observations to the ellipsoid and the 

techniques involved in computing geodetic positions on the ellipsoid both direct and inverse problems. 

Also, we become capable of performing the relevant calculation and applications in practice. We also 

understand the geometric relationship of the ellipse with respect to the Cartesian. 
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Appendix B 
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Appendix C 
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